
77Asian Journal of Economics and Banking (2020), 4(1), 77–86

Asian Journal of Economics and Banking

ISSN 2615-9821

http://ajeb.buh.edu.vn/Home

Quantum (and More General) Models of Research

Collaboration

Oscar Galindo1, Miroslav Svitek2, and Vladik Kreinovich1�

1Department of Computer Science, Universtity of Texas at El Paso, 500 W. University,

El Paso, TX 79968, USA. Email: ogalindomo@miners.utep.edu, vladik@utep.edu

2Faculty of Transportation Sciences, Czech Technical University in Prague, Konviktska

20, CZ-110 00 Prague 1, Czech Republic. Email: svitek@fd.cvut.cz

Article Info

Received: 12/02/2020
Accepted: 16/3/2020
Available online: In Press

Keywords

Quantum Models, Research
Collaboration

JEL classification

C02, C49, J01

MSC2020 classification

91B70, 91B80, 91C99, 91D30,
62P25, 81Q99

Abstract

In the last decades, several papers have shown that

quantum techniques can be successful in describing

not only events in the micro-scale physical world –

for which they were originally invented – but also in

describing social phenomena, e.g., different economic

processes. In our previous paper, we provide an ex-

planation for this somewhat surprising successes. In

this paper, we extend this explanation and show that

quantum (and more general) techniques can also be

used to model research collaboration.
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1 FORMULATION OF THE
PROBLEM

What is the problem. It is well
known that when researchers collab-
orate, their productivity usually in-
creases: together, they generate more
results and more applications than
when they work on their own. Some-
times, this increase is significant, some-
times, it is small, and sometimes, the
two people simply do not match, and
their attempts to collaborate turn out
to be counter-productive. To enhance
productivity, it is therefore desirable to
predict how well a group of researchers
can work together. For this prediction,
we can use the experience of their past
collaboration with each others and with
other researchers. To make such a pre-
diction, we need a good model of such
collaboration efficiency.

The existing models do not always
provide a good prediction, so new mod-
els are needed.

How can we approach this problem.
We need a quantitative model to de-
scribe a social phenomenon. In gen-
eral, quantitative methods appeared in
social sciences much later than in natu-
ral sciences – such as physics. As a re-
sult, from the mathematical viewpoint,
we can claim that quantitative models
in social sciences are “behind” physics
models. For example, stochastic dif-
ferential equations have been, in effect,
used in physics for many decades – e.g.,
to describe the Brownian motion – while
in social sciences, such models appeared
only a few decades ago, to predict the
cost of financial derivatives.

From this viewpoint, to make social
models more adequate, a natural idea is
to try to use mathematics behind more
recent physics models. One formalism
that is been actively used in physics is
the formalism of quantum mechanics. It
is thus reasonable to try to use quantum
techniques to describe social phenom-
ena. This idea has been indeed success-
fully tried; see, e.g., [1, 3, 4, 10–12] and
references therein.

At first glance, these successes may
sound accidental – after all, quantum
phenomena in physics are very differ-
ent from social phenomena. However,
as we have shown in [12], there is a
solid explanation behind these successes
– namely, a detailed stochastic analy-
sis of the corresponding social phenom-
ena shows that quantum-type formulas
indeed appear as a reasonable first ap-
proximation to these phenomena. That
paper also provides formulas for – pos-
sible more accurate – next approxima-
tions.

What we do in this paper. In this
paper, we extend the analysis from
[12] to the collaboration phenomenon.
Namely, we show that this analysis
leads, in the first approximation, to
a quantum-type model of collaboration
phenomena. We also provide ideas for
next (post-quantum) approximations.
Comment. In this paper, we focus on
research collaboration, since the results
of this type of collaboration can be nat-
urally quantified. However, we believe
that similar techniques can be useful in
describing other types of collaboration
as well – e.g., between musicians in an
orchestra or between athletes in a sports
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team, provided that we (find and) use
an appropriate numerical measure for
the successfulness of such collaboration.

2 ANALYSIS OF THE PROBLEM

Stochastic character of research collab-
oration. Research activity is a difficult-
to-predict phenomenon, probably the
hardest-to-predict: if it was easy to
predict the results, there would be no
need for creative collaboration. The
results of a creative process depends
on many difficult-to-predict factors: an
idea comes to mind, an article happens
to appear in a journal that deals with
a similar problem, a new analogy sud-
denly pops into mind. All these factors
are largely random.

Thus, from the mathematical view-
point, a person’s creative activity can be
described as a random process depend-
ing on many independent factors.

None of these factors is dominant: in
some cases, a new paper prompted the
insight; in other cases, it was some piece
of art – for example, Einstein famously
said that Dostoyevsky inspired him even
more than Gauss. We can therefore con-
clude that the individual’s research pro-
ductivity is the result of a joint effect of
many relatively small independent fac-
tors.

It is known that, under reasonable
assumptions, such a joint effect is rea-
sonably well described by a Gaussian
(normal) distribution. To be more pre-
cise, the corresponding Central Limit
Theorem (see, e.g., [9]) states that when
the number N of such small factors
tends to infinity, the probability distri-
bution of their summary effect tends to

Gaussian – which means exactly that if
N is large, the corresponding probabil-
ity distribution is close to Gaussian.

This description applies both to the
state xi of each researcher i, and to the
vector x = (x1, . . . , xn) describing the
state of each of the researchers from a
given group. So, we can conclude that
the state of all the researchers can be
described by a multi-D Gaussian pro-
cess. If instead of the original state, we
consider the deviations from the original
state – the only thing that matters in re-
search – we can conclude that the mean
value of this newly considered state is 0.

Vector descriptions. Some factors af-
fecting productivity are individual to
each researcher, others may be common
to several researchers. As a result, the
corresponding random variables are cor-
related.

It is known that a generic n-
dimensional multi-D Gaussian distribu-
tion with 0 mean can be described
as a linear combination of n indepen-
dent standard Gaussian random vari-
ables, with 0 mean and standard de-
viation 1. In other words, each ran-
dom variable xi can be described as
xi = ai1 ·e(1)+. . .+ain ·e(n) for some real
numbers ai1, . . . , ain, where e(i) are in-
dependent Gaussian variables for which
the mean E

[
e(i)
]

is equal to 0 and the

standard deviation σ
[
e(i)
]

is equal to 1.
Thus, the research activity of each

individual i can be described by an n-
dimensional vector ai = (ai1, . . . , ain).
The overall productivity of a person can
be estimated as a mean-square value of
the corresponding deviation, i.e., since
E[xi] = 0, as Vi = E[x2i ]. From the
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above formula for xi, we can conclude
that

Vi = ‖ai‖2
def
=

n∑
j=1

a2ij.

Need for an approximate description.
For large n, we need to represent
each researcher by a corresponding n-
dimensional vector. Science is a col-
lective enterprise, involving thousands
of people. So, to represent each re-
searcher exactly, we would need to de-
scribe thousands of parameters. All
these parameters need to be determined
experimentally, but usually, we do not
have enough information about each in-
dividual researcher to find all these pa-
rameters.

So, realistically, we have to ignore
some of the original parameters. Thus,
a natural idea is to select some number
k � n and describe each researchers
by a smaller-dimensional (namely, k-
dimensional) vector Ai = (Ai1, . . . , Aik).

Quantum description as a particular
case of a vector description. In par-
ticular, for k = 2, each researcher i
is characterized by a 2-D vector Ai =
(Ai1, Ai2), and the researcher’s produc-
tivity is characterized by the value

Vi = A2
i1 + A2

i2.

One of the possible algebraic inter-
pretations of a 2-D space is as a space of
all complex numbers. Thus, it is natu-
ral to characterize each researcher by a
complex number Ci = Ai1+i·Ai2, where

i
def
=
√
−1. In this case, Vi = |Ci|2.

From the mathematical viewpoint,
this is exactly what quantum descrip-
tions are about – using complex num-
bers to describe the states, with the

square of the absolute values of the
corresponding quantum numbers to de-
scribe the observable quantity (in quan-
tum case, probability of an event).

Need to describe collaboration. So
far, we have described the state (and
the productivity) of an individual re-
searcher. When some of the researchers
work together, their state and their pro-
ductivity changes. In general, if we have
m researchers, we can have all possible
groups working together, i.e., all possi-
ble non-empty subsets S ⊆ {1, . . . ,m}.

Suppose that we know the states
A1, . . . , Ar of all the researchers. Based
on these states, we can estimate the pro-
ductivity ‖Ai‖2 of each researcher i.

We would like to predict the state
AS of all possible groups S – and thus,
predict the productivity ‖AS‖2 of each
such group.

How can we describe collaboration.
Let us start with an informal descrip-
tion. Each group S can be character-
ized by its characteristic function χS,
i.e., by assigning, to each researcher i,
a value χS(i) which is equal to 1 if the
researcher i is a member of this group
and 0 if not. In there terms, the desired
state AS is a function of n binary (0-
or-1) variables χS(1), . . . , χS(n): AS =
F (χS(1), . . . , χS(m)).

In many application areas, the de-
pendencies f(x1, . . . , xm) are smooth, so
we can expand them in Taylor series

f(x1, . . . , xm) = a0 +
m∑
i=1

ai · xi+

m∑
i1,i2=1

ai1i2 · xi1 · xi2 + . . . , (1)
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and, if needed, approximate this de-
pendence by keeping only the few first
terms in this expansion. In many cases,
already the linear approximation

f(x1, . . . , xm) = a0 +
m∑
i=1

ai · xi (2)

works reasonably well; see, e.g., [2].
In our case, the variables are dis-

crete, so we cannot talk about smooth
dependence. However, it turns out that
a similar formula (1) is applicable in this
case as well: namely, every function of
m binary variables can be described by
a similar formula; see, e.g., [5–8]. To be
more precise, for binary variables, the
square of each variable coincides with its
original value x2i = xi, so it is sufficient
to only consider coefficients ai1...id in
which the indices do not repeat. Thus,
we get a form

f(x1, . . . , xm) = a0 +
m∑
i=1

ai · xi

+
∑
i<i′

ai1i2 · xi1 · xi2

+
∑

i1<i2<i3

ai1i2i3 · xi1 · xi2 · xi3 + . . . (3)

The transformation that maps each
function of n binary variables into the
corresponding coefficients a0, ai, etc., is
known as the Möbius transform for par-
tially ordered sets; see, e.g., [8].

This dependence holds for each com-
ponent ASj of the desired state vec-
tor AS = (AS1, . . . , ASn). In this case,
xi = χS(i), and the corresponding prod-
uct χS(i1) · . . . ·χS(id) is different from 0
if and only if all the researchers i1, . . . , id
belong to the group S, i.e., if and only if

{i1, . . . , id} ⊆ S. In this case, the prod-
uct χS(i1) · . . . ·χS(id) is equal to 1. So,
for the component ASj, the formula (3)
takes the following form:

ASj = a0j +
∑
i∈S

aij

+
∑

i1,i2:{i1,i2}⊆S

ai1i2j

+
∑

i1,i2,i3:{i1,i2,i3}⊆S

ai1i2i3j + . . . (4)

The case S = ∅means that no one is do-
ing anything. In this case, the produc-
tivity is 0, so we should have ASj = 0.
For S = ∅, the formula (4) turns into
ASj = a0j, so we conclude that a0j = 0.
Thus, the formula (4) takes a simplified
form

ASj =
∑
i∈S

aij +
∑

i1,i2:{i1,i2}⊆S

ai1i2j

+
∑

i1,i2,i3:{i1,i2,i3}⊆S

ai1i2i3j + . . . (5)

What if we have a researcher working
on his/her own? In this case, S = {i},
and the right-hand side of the formula
(5) turns into aij. On the other hand, in
this case, ASj is the j-th component Aij

of the vector Ai describing the state of
the i-th researcher. Thus, we conclude
that aij = Aij and so, the formula (5)
takes the form

ASj =
∑
i∈S

Aij +
∑

i1,i2:{i1,i2}⊆S

ai1i2j

+
∑

i1,i2,i3:{i1,i2,i3}⊆S

ai1i2i3j + . . . (6)

We can describe this in vector terms, if
we introduce vectors

Ai1...id
def
= (ai1...id1, . . . , ai1...idk);
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then, the formula (6) takes the form:

AS =
∑
i∈S

Ai +
∑

i1,i2:{i1,i2}⊆S

Ai1i2

+
∑

i1,i2,i3:{i1,i2,i3}⊆S

Ai1i2i3 + . . . (7)

In particular, in the first approximation,
when we only keep linear terms, we get

ASj =
∑
i∈S

Aij, (8)

i.e., in terms of vectors,

AS =
∑
i∈S

Ai. (9)

In the 2-D case, if we describe 2-D
vectors Ai, Ai1i2 , . . . , and AS by com-
plex numbers Ci, Ci1i2 , . . . , and CS, we
get

CS =
∑
i∈S

Ci +
∑

i1,i2:{i1,i2}⊆S

Ci1i2

+
∑

i1,i2,i3:{i1,i2,i3}⊆S

Ci1i2i3 + . . . (10)

In the first approximation, when we
only keep linear terms, we get:

CS =
∑
i∈S

Ci. (11)

Thus, we arrive at the following model
for describing research collaboration.

3 RESULTING MODEL AND ITS
ANALYSIS

Resulting model: general case. To de-
scribe research collaboration, we need to
select two parameters:

� the dimension k of the vectors de-
scribing the state of each research
(and each group), and

� the order d of the terms that we
use to describe collaboration.

The larger k and the larger d, the more
accurate the description.

In this model, the state of each re-
searcher is described by a k-dimensional
vector Ai = (Ai1, . . . , Aik). In these
terms, the productivity Vi of an indi-
vidual researcher is equal to Vi = ‖Ai‖2,
where, for each vector v = (v1, . . . , vk),

the value ‖v‖ def
=
√
v21 + . . .+ v2k de-

notes its length.
In particular, when k = 2, we can

describe this state Ai = (Ai1, Ai2) as
a complex number Ci = Ai1 + i · Ai2.
In terms of this complex number, the
length of the vector Ai is then equal to
|Ci|2.

For each group S of collaborating re-
searchers, the vector AS that describes
the state of this group has the form:

AS =
∑
i∈S

Ai +
∑

i1,i2:{i1,i2}⊆S

Ai1i2

+ . . .+
∑

i1,...,id:{i1,...,id}⊆S

Ai1...id , (12)

for appropriate auxiliary vectors Ai1i2 ,
. . . , Ai1...id . The productivity VS of the
group S is equal to ‖AS‖2.

In particular, in the complex-valued
case k = 2, we get

CS =
∑
i∈S

Ci +
∑

i1,i2:{i1,i2}⊆S

Ci1i2 + . . .

+
∑

i1,...,id:{i1,...,id}⊆S

Ci1...id , (13)

and the productivity is equal to |CS|2.
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It is necessary to select small k and
d. The larger the values of k and n,
the more accurate the resulting model
– but, on the other hand, the more pa-
rameters we will need to describe this
model, and we usually do not have
enough observations to determine too
many parameters. Thus, we need to
concentrate on models with small k and
d, for which the number of parameters
is still reasonable.

Let us start with the smallest possi-
ble values, and, if the resulting oversim-
plified model is not too realistic, let us
see how to increase k or d to make the
model more realistic while keeping the
number of parameters reasonable.

What is the simplest case: description
and analysis. The simplest case is when
we select the smallest possible values
k = 1 and d = 1. In this case, the
state of each researcher i is described
by a single number Ai, with productiv-
ity Vi = |Ai|2, the state AS of a group
S is equal to the sum AS =

∑
i∈S

Ai, and

the productivity of the group is equal to
|Vi|2.

In particular, for a group S = {1, 2}
consisting of two researchers, we have
VS = |A1 + A2|2. Here, in terms of the
productivity Vi, the state Ai of the i-
th researcher has the form Ai = ±

√
Vi,

so VS = | ±
√
V1 ±

√
V2|2. Depending

on the signs of Ai, we have two possible
options:

� if both states A1 and A2 have the
same sign, then

VS = (
√
V1 +

√
V2)

2

= V1 + V2 + 2
√
V1 ·

√
V2;

� if the states A1 and A2 have dif-
ferent signs, then

VS = (
√
V1 −

√
V2)

2

= V1 + V2 − 2
√
V1 ·

√
V2.

Thus, in this simplified model, we cap-
ture two cases:

� when the researchers most suc-
cessfully collaborate, and

� when the researchers are so in-
compatible with each other that
their overall productivity as a
group is smaller than the produc-
tivity of one of them.

Limitations of the simplest model and
need for a more complex one. In re-
ality, in addition to these two extreme
cases, we have the whole spectrum of
possible collaboration success. To cap-
ture this spectrum, we need to consider
a more adequate model, i.e., we need to
either increase k or increase d (or in-
crease both).

Which is the next simplest model? The
next simplest model is when we:

� either increase k by one, leaving d
unchanged, or

� or increase d by one, leaving k un-
changed.

In the first case, when we take k = 2
and d = 1, to describe the situation
of m possibly collaborating researchers,
we need to know the values of m 2-
dimensional vectors. So, in this case,
overall, we need 2m numerical parame-
ters.



84 Asian Journal of Economics and Banking (2020), 4(1), 77–86

In the second case, when we take
k = 1 and d = 2, we need to de-
scribe m numbers Ci corresponding to

linear order terms, and
m · (m− 1)

2
val-

ues Ci1i2 corresponding to second or-
der terms in the formula (10) – exactly
as many as there are pairs (i1, i2) with
i1 < i2. So, in this case, overall, we need

m+
m · (m− 1)

2
=
m · (m+ 1)

2
param-

eters.
The second number of parameters is

larger if
m · (m+ 1)

2
> 2m, i.e., when

m+ 1

2
> 2, i.e., when m + 1 > 4 and

m > 3. So, for each group consisting
of at least 4 researchers, the first model
(with k = 2 and d = 1) requires fewer
parameters and is, thus, much simpler.
Because of this, in the following text, we
will consider the model with k = 2 and
d = 1.

Let us consider this next simplest
model. In this next simplest model,
each participant is described by a 2-D
vector – i.e., equivalently, by a complex
number Ci. The productivity of each
group S is equal to PS = |CS|2, where

CS =
∑
i∈S

Ci. (14)

Thus, we have

PS = |CS|2 =
∑
i∈S

|Ci|2

+2
∑
i1<i2

|Ci| · |Cj| · cos(αij), (15)

where αij is the angle between the 2-
D vectors Ci and Cj. In particular, for
each participant i, his/her productivity

Pi is equal to |Ci|2. So, in terms of indi-
vidual productivity values, |Ci| =

√
Vi

and the formula (15) takes the form:

PS =
∑
i∈S

Pi+2
∑
i1<i2

√
Pi ·
√
Pj ·cos(αij).

(16)
Our preliminary analysis shows that

this model describes the collaboration
between folks reasonably well – at least
on the qualitative level. When the co-
sine is positive, the group’s productivity
is much larger than the combined pro-
ductivity of all its members. For exam-
ple, if all the angles are 0s, and all the
cosines are equal to 1, then for a group
of m members its productivity grows as
m2, while the sum of productivity val-
ues grows only as m.

On the other hand, if the cosines
are negative, the overall productivity
is smaller than it would be if every-
one worked on their own. In this case,
researchers are clearly not compatible,
and collaboration does not make sense.

Possible future work. It would be nice
to compare, on a quantitative level, how
well collaboration results can be de-
scribed by this model. It this model
turns out to be adequate, we can then
use it to decide how to group people into
collaborating teams – so as the overall
productivity of all these teams is the
largest possible.

Of course, even if the model works
well, it will be only approximate – since
practically all models of real-life situ-
ations, especially models involving hu-
man behavior, are approximate. For
applications requiring higher accuracy,
it would then be natural to look for a
more accurate model – e.g., to consider
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larger values of parameters k and n.
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